首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   497篇
  免费   16篇
  国内免费   7篇
测绘学   8篇
大气科学   41篇
地球物理   90篇
地质学   113篇
海洋学   160篇
天文学   76篇
综合类   6篇
自然地理   26篇
  2021年   2篇
  2020年   5篇
  2019年   8篇
  2018年   8篇
  2017年   16篇
  2016年   24篇
  2015年   9篇
  2014年   17篇
  2013年   25篇
  2012年   11篇
  2011年   19篇
  2010年   16篇
  2009年   23篇
  2008年   25篇
  2007年   27篇
  2006年   23篇
  2005年   29篇
  2004年   27篇
  2003年   20篇
  2002年   17篇
  2001年   14篇
  2000年   15篇
  1999年   14篇
  1998年   16篇
  1997年   8篇
  1996年   10篇
  1995年   9篇
  1994年   7篇
  1993年   5篇
  1992年   2篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   2篇
  1984年   4篇
  1983年   12篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有520条查询结果,搜索用时 343 毫秒
11.
Sea water samples were collected from various depths in the North Pacific (40–21°N) along 165°E in 1991. Their total carbonate (total dissolved carbonate species) contents were determined with random errors less than 0.2% by a coulometric method. The preformed carbonate contents defined by Chen (1982) were calculated from the obtained data and other observed data including potential temperature, salinity, dissolved oxygen and total alkalinity. The same calculation was done for the GEOSECS data obtained in nearly the same region in 1973. The difference between the two data sets reveals that the preformed carbonate has increased by 180±41 gC/m2 during the last 18 years. This value is comparable or somewhat larger than 150 gC/m2 obtained in the case that the ocean uptakes 3 GtC/yr for 18 years and distributes it equally among the world oceans. Based on the results, a hypothesis on the missing sink for the anthropogenic carbon dioxide is presented, in that the missing sink is the intermediate waters formed in the northern North Pacific and the Southern Ocean besides the deep waters formed in the North Atlantic and the Southern Ocean.  相似文献   
12.
A model based on that of Kishi et al. (2001) has been extended to 15 compartments including silicon and carbon cycles. This model was applied to Station A7 off Hokkaido, Japan, in the Northwestern Pacific. The model successfully simulated the observations of: 1. a spring bloom of diatoms; 2. large seasonal variations of nitrate and silicate concentrations in the surface water; and 3. large inter-annual variations in chlorophyll-a. It also reproduced the observed features of the seasonal variations of carbon dioxide partial pressure (pCO2)—a peak in pCO2 in winter resulting from deep winter convection, a rapid decrease in pCO2 as a result of the spring bloom, and an almost constant pCO2 from summer through fall (when the effect of increasing temperature cancels the effect of biological production). A comparison of cases with and without silicate limitation shows that including silicate limitation in the model results in: 1. decreased production by diatoms during summer; and 2. a transition in the dominant phytoplankton species, from diatoms to other species that do not take up silicate. Both of these phenomena are observed at Station A7, and our results support the hypothesis that they are caused by silicate limitation of diatom growth. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
13.
Mean monthly records of coastal sea surface temperature data (CSST) obtained from stations along the Japanese coasts of the Japan Sea and from those in the related seas for the period 1941–1984 were analyzed by using various methods of time series analysis, for the purpose of clarifying the nature of the year-to-year variations of the state of the Japan Sea. The year-to-year variations in the Japan Sea were found to be closely related to those in the East China Sea and in the western North Pacific. Specific results are as follows. (1) A sudden cooling in the early 1960's occurred in the southern stations of the Japan Sea and continued to the end of the analyzed data. (2) Variations, with about a 6-year periodicity, were observed at most stations, and were especially dominant in the southern stations of the Japan Sea (3) These variations could be traced back to the Kuroshio region of the East China Sea. (4) Variations, with about a 10-year periodicity, were also observed in the northern stations of the Japan Sea.  相似文献   
14.
Japanese fisheries production in the Japan/East Sea between 1958 and 2003 increased to their peak (1.76 million tons) in the late 1980s and decreased abruptly with the collapse of Japanese sardine. Catch results for 58 fisheries and various environmental time-series data sets and community indices, including mean trophic level (MTL) and Simpson’s diversity index (DI), were used to investigate the impacts of fishing and climate changes on the structure of the fish community in the Tsushima warm current (TWC) region of the Japan/East Sea. The long-term trend in fisheries production was largely dependent on the Japanese sardine that, as a single species, contributed up to 60% of the total production in the Japanese waters of the Japan/East Sea during the late 1980s. Excluding Japanese sardine, production of the small pelagic species was higher during 1960s and 1990s but lower during 1970s and 1980s. This variation pattern generally corresponds with the trend in water temperature, warmer before early 1960s and after 1990s but colder during 1970s and 1980s. The warm-water, large predatory fishes and cold water demersal species show opposite responses to the water temperature in the TWC region, indicating the significant impact of oceanic conditions on fisheries production of the Japan/East Sea. Declines in demersal fishes and invertebrates during 1970s and 1980s suggested some impact of fishing. MTL and DI show a similar variation pattern: higher during 1960s and 1990s but lower during 1970s and 1980s. In particular, the sharp decline during the 1980s resulted from the abundant sardine catches, suggesting that dominant species have a large effect on the structure of the fish community in the Japan/East Sea. Principal component analysis for 58 time-series data sets of fisheries catches suggested that the fish community varied on inter-annual to inter-decadal scales; the abrupt changes that occurred in the mid-1970s and late 1980s seemed to correspond closely with the climatic regime shifts in the North Pacific. These results strongly suggest that the structure of the fish community in the Japan/East Sea was largely affected by climatic and oceanic regime shifts rather than by fishing. There is no evidence showing “fishing down food webs” in the Japan/East Sea. However, in addition to the impacts of abrupt shifts that occurred in the late 1980s, the large predatory and demersal fishes seem to be facing stronger fishing pressure with the collapse of the Japanese sardine.  相似文献   
15.
A preliminary study of carbon system in the East China Sea   总被引:1,自引:0,他引:1  
In the central part of the East China Sea, the activity of CO2 in the surface water and total carbonate, pH and alkalinity in the water column were determined in winter and autumn of 1993. The activity of CO2 in the continental shelf water was about 50 ppm lower than that of surface air. This decrease corresponds to the absorption of about 40 gC/m2/yr of atmospheric CO2 in the coastal zone or 1 GtC/yr in the global continental shelf, if this rate is applicable to entire coastal seas. The normalized total carbonate contents were higher in the water near the coast and near the bottom. This increase toward the bottom may be due to the organic matter deposited on the bottom. This conclusion is supported by the distribution of pH. The normalized alkalinity distribution also showed higher values in the near-coast water, but in the surface water, indicating the supply of bicarbonate from river water. The residence time of the East China Sea water, including the Yellow Sea water, has been calculated to be about 0.8 yr from the excess alkalinity and the alkalinity input. Using this residence time and the excess carbonate, we can estimate that the amount of dissolved carbonate transported from the coastal zone to the oceanic basin is about 70 gC/m2/yr or 2 GtC/yr/area-of-global-continental-shelf. This also means that the rivers transport carbon to the oceans at a rate of 30 gC/m2/yr of the coastal sea or 0.8 GtC/yr/ area-of-global shelf, the carbon consisting of dissolved inorganic carbonate and terrestrial organic carbon decomposed on the continental shelf.  相似文献   
16.
JGOFS has revealed the importance of marine biological activity to the global carbon cycle. Ecological models are valuable tools for improving our understanding of biogeochemical cycles. Through a series of workshops, the North Pacific Marine Science Organization (PICES) developed NEMURO (North Pacific Ecosystem Model Understanding Regional Oceanography) a model, specifically designed to simulate the lower trophic ecosystem in the North Pacific Ocean. Its ability to simulate vertical fluxes generated by biological activities has not yet been validated. Here compare NEMURO with several other lower trophic level models of the northern North Pacific. The different ecosystem models are each embedded in a common three-dimensional physical model, and the simulated vertical flux of POM and the biomass of phytoplankton are compared. The models compared are: (1) NEMURO, (2) the Kishi and Nakata Model (Kishi et al., 1981), (3) KKYS (Kawamiya et al., 1995, 2000a, 2000b), and (4) the Denman model (Denman and Peña, 2002). With simple NPZD models, it is difficult to describe the production of POM (Particulate Organic Matter) and hence the simulations of vertical flux are poor. However, if the parameters are properly defined, the primary production can be well reproduced, even though none of models we used here includes iron limitation effects. On the whole, NEMURO gave a satisfactory simulation of the vertical flux of POM in the northern North Pacific.  相似文献   
17.
Vertical distribution of anthropogenic carbon content of the water (exDIC) in the Oyashio area just outside of the Kuroshio/Oyashio Interfrontal Zone (K/O Zone) was estimated by the simple 1-D advection-diffusion model calibrated by the distribution of chlorofluorocarbons (CFCs). The average concentration of exDIC for = 26.60–27.00 is multiplied by the volume transport of Oyashio water into the North Pacific Intermediate Water (NPIW) to estimate the annual transport of exDIC into NPIW through K/O Zone. The estimated transport of exDIC was 0.018–0.020 GtC/y, which corresponds to 15% of the whole total exDIC accumulation in the temperate North Pacific. A simple assessment using the NPIW 1-box model indicates that the current study explains at least 70% of the total annual transport of exDIC into NPIW, and that small exDIC sources for NPIW still exists in addition to K/O Zone.  相似文献   
18.
Solid-phase microextraction (SPME) is a simple, sensitive and less destructive method for the determination of dimethylsulfide (DMS) in seawater. Combined with detection by gas chromatography-mass spectrometry (GC-MS), the method had sufficient sensitivity (minimum detectable concentration of DMS was 0.05 nM), and practical levels of reproducibility (relative standard deviation ≤7%) and linearity (r 2 > 0.995) over a wide concentration range (0.5 to 910 nM). The protocol developed was applied to a Sagami Bay water sample to determine concentrations of DMS and DMSP, and in situ DMSP-lyase activity.  相似文献   
19.
We proposed an empirical equation of sea surface dimethylsulfide (DMS, nM) using sea surface temperature (SST, K), sea surface nitrate (SSN, μM) and latitude (L, °N) to reconstruct the sea surface flux of DMS over the North Pacific between 25°N and 55°N: ln DMS = 0.06346 · SST  0.1210 · SSN  14.11 · cos(L)  6.278 (R2 = 0.63, p < 0.0001). Applying our algorithm to climatological hydrographic data in the North Pacific, we reconstructed the climatological distributions of DMS and its flux between 25 °N and 55 °N. DMS generally increased eastward and northward, and DMS in the northeastern region became to 2–5 times as large as that in the southwestern region. DMS in the later half of the year was 2–4 times as large as that in the first half of the year. Moreover, applying our algorithm to hydrographic time series datasets in the western North Pacific from 1971 to 2000, we found that DMS in the last three decades has shown linear increasing trends of 0.03 ± 0.01 nM year− 1 in the subpolar region, and 0.01 ± 0.001 nM year− 1 in the subtropical region, indicating that the annual flux of DMS from sea to air has increased by 1.9–4.8 μmol m− 2 year− 1. The linear increase was consistent with the annual rate of increase of 1% of the climatological averaged flux in the western North Pacific in the last three decades.  相似文献   
20.
Abstract. Four sites were sampled in kelp (Macrocysiis pyrifera) forests occupying rocky bottom habitats along a wave exposure gradient in central California. Consistent betwecn-site differences were found in the three major structural elements - the surface canopy, the undcrstory assemblage, and the ground cover/turf assemblage - of kelp forest communities. Macrocysiis pyrifera was found at all four sites. Nereucyslis tuelkeana only at the most exposed site. The understory kelps Laminaria setchellii and Pterygopltora californica were also characteristic of exposed sites. Articulated coralline algae were more abundant at exposed sites than protected, while fleshy red algae showed the opposite pattern. All four study sites were located along 8.5 km of coastline, and thus were assumed to have available to them the same species pool for colonization. The substrate composition was the same and the amount of unconsolidated substrate was similar at all four sites. We suggest that exposure to wave-generated water motion, through its influence on the surface canopy and therefore on the amount of light reaching the bottom, is responsible for these between-site differences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号